8 research outputs found

    Simple certificate for power distribution network security assessment

    No full text
    Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2017.Cataloged from PDF version of thesis.Includes bibliographical references (pages 53-54).The integration of volatile renewable energy sources, non-traditional load managements, and unforeseen natural disasters introduce uncertainties that could easily jeopardize the security of power systems. Meanwhile, constructing the real solvable boundary-crucial for contingency analysis, security assessment, and planning network processes-in multidimensional parameter space is burdensome and time consuming; hence there is an urgent need for a tool to identify the security region, or the set of viable injections. This thesis presents fast and reliable inner approximation techniques for solvable boundaries of power distribution systems based on Banach fixed point theorem and Kantorovich theorem. The novel method is in a simple "certificate" form-a single lined inequality condition that involves the system variables and parameters. Our certificate is noniterative, therefore computationally efficient, and the simulation results confirm that the presented approach constructs regions that are sufficiently large for most security-constrained functions. The construction for our "certificates" begins with re-formulating power-flow equations into appropriate forms such that they are applicable to the aforementioned two major theorems. Practical applications of the proposed technique include fast screening tool for feasible injection change, certified solvability margins, and new computationally robust continuation power flow algorithms.by Suhyoun Yu.S.M

    Fixed-point theorem-based voltage stability margin estimation techniques for distribution systems with renewables

    No full text
    The future distribution systems expose to an unprecedented level of uncertainties due to renewable resources, nontraditional loads, aging infrastructure, etc., posing potential risks to secure operation of the system.This article proposes a new technique to estimate the voltage stability margin of the distribution systems with high penetration of renewables.Its convergence and robustness under complex and stressed working conditions are guaranteed in theory. This technique is handy for the operation as it features self-adaptive step size and is applicable to general system topology. It leverages a newly derived analytical solvability certificate based on the Kantorovich fixed-point theorem. A fast version of the proposed technique is duly proposed to speed up the computation up to 8 times while maintaining high accuracy, which lends itself to online and time-sensitive emergency tasks. Numerical simulations with various IEEE test feeders verify the performance of the techniques.Ministry of Education (MOE)Nanyang Technological UniversityNational Research Foundation (NRF)This work was supported in part by NTU SUG, MOE AcRF TIER 1- 2019-T1-001-119 (RG 79/19), and in part by EMA & NRFEMA-EP004-EKJGC-0003
    corecore